Mathematics
Level 1/ODEs

1. Introduction

An ordinary differential equation (ODE) is an equation that relates a function of one variable to its derivatives with respect to that variable.

Example 1 (Simple first order ODE)

Solve dydx+f(x)y=g(x) \quad \dfrac{dy}{dx} + f(x)y = g(x)

 

Example 2 (Bernoulli ODE)

Solve dydx+f(x)y=g(x)yn\quad \dfrac{dy}{dx} + f(x)y = g(x)y^n \quad where n0,1\quad n \neq 0, 1