Level 1/Group Theory3. Composite Transformations----- sr=usr = usr=u (1,2,3)↦(1,3,2)↦(2,1,3)=u(1, 2, 3) \quad \mapsto \quad (1, 3, 2) \quad \mapsto \quad (2, 1, 3) \quad = \quad u(1,2,3)↦(1,3,2)↦(2,1,3)=u rs=trs = trs=t (1,2,3)↦(3,1,2)↦(3,2,1)=t(1, 2, 3) \quad \mapsto \quad (3, 1, 2) \quad \mapsto \quad (3, 2, 1) \quad = \quad t(1,2,3)↦(3,1,2)↦(3,2,1)=t r2s=u=srr^2s = u = srr2s=u=sr (1,2,3)↦(2,3,1)↦(2,1,3)=u(1, 2, 3) \quad \mapsto \quad (2, 3, 1) \quad \mapsto \quad (2, 1, 3) \quad = \quad u(1,2,3)↦(2,3,1)↦(2,1,3)=u sr2=t=rssr^2 = t = rssr2=t=rs (1,2,3)↦(1,3,2)↦(3,2,1)=t(1, 2, 3) \quad \mapsto \quad (1, 3, 2) \quad \mapsto \quad (3, 2, 1) \quad = \quad t(1,2,3)↦(1,3,2)↦(3,2,1)=t 2. Equilateral Triangle-----4. Dihedral Group-----