Mathematics

1. Introduction

Study of numbers with real and imaginary parts

Definition

Imaginary Number

i=1i = \sqrt{-1}

Complex Number

4i,      3+i,      84i4i,\;\;\; 3 + i,\;\;\; 8-4i

 

Complex numbers are all real & imaginary numbers or a combination of.

z=a+bi,a,bR,zCz = a + b i, \quad a, b \in \mathbb{R}, \quad z \in \mathbb{C}

 

Example

a)(3+2i)+(54i)=82ib)(53i)(5+2i)=25+10i15i6i2=255i+6=315i\begin{aligned} \text{a)} \quad & (3 + 2i) + (5 - 4i) &&= 8 - 2i \\[1mm] \text{b)} \quad & (5 - 3i)(5 + 2i) &&= 25 + 10i - 15i - 6i^2 \\ & &&= 25 - 5i + 6 \\ & &&= 31 - 5i \end{aligned}

Notation

Let         z=a+bi  \; \; \; \; z = a + bi \;

then   Re(z)=a \; Re(z) = a

&           Im(z)=b \; \; \; \; \; Im(z) = b