Mathematics

3. Roots of Quadratics

-----

The solutions of a quadratic equation, may be real or complex. In this case complex.

Let

  az2+bz+c=0  \; az^2 + bz + c = 0 \;

be a quadratic where

a,b,cR\quad a, b, c \in \mathbb{R}

but the roots of the quadratic are non-real complex numbers.

How to solve

Case 1

If   z1  \;z_1\; is a root, then the other root is   z2=z\; z_2 = \overline z.

 

Case 2

If the quadratic is in the form

(zα)(zβ)=0(z - \alpha)(z - \beta) = 0

then

z2(α+β)z+αβz^2 - (\alpha + \beta)z + \alpha\beta

and if we write

az2+bz+c=0az^2 + bz + c = 0

as

z2+baz+ca=0z^2 + \dfrac{b}{a}z + \dfrac{c}{a} = 0

then

α+β=ba,αβ=ca\alpha + \beta = -\dfrac{b}{a}, \quad \alpha\beta = \dfrac{c}{a}

these results can be used to find the quadratic equation given a single root.

 

Example

Given that   α=7+2i   \; \alpha = 7 + 2i \; is one of the roots of a quadratic with real coefficients

a)State the other root of βb)Find the quadraticc)Find the values of α,β,  αβ and interpret your results\begin{aligned} \text{a)} \quad & \text{State the other root of } \beta \\[1mm] \text{b)} \quad & \text{Find the quadratic} \\[1mm] \text{c)} \quad & \text{Find the values of } \alpha, \beta, \; \alpha \beta \text{ and interpret your results} \end{aligned}

Answer

a)β=α=72ib)Quadratic: z2(α+β)z+(αβ)=z214z+53c)α=7+2i,β=72i,αβ=53,sum α+β=14\begin{aligned} \text{a)} \quad & \beta = \overline{\alpha} = 7 - 2i \\[1mm] \text{b)} \quad & \text{Quadratic: } z^2 - (\alpha + \beta)z + (\alpha \beta) = z^2 - 14z + 53 \\[1mm] \text{c)} \quad & \alpha = 7 + 2i, \quad \beta = 7 - 2i, \quad \alpha \beta = 53, \quad \text{sum } \alpha + \beta = 14 \end{aligned}