Mathematics

2. Complex Conjugates

-----

Two complex numbers that are mirror images across the real axis.

Let       z=a+bi\; \; \; z = a + b i

then   z=abi  \; \overline{z} = a - b i \; is called the complex conjugate of zz.

 

Example

Write 5+4i23i\dfrac{5 + 4i}{2 - 3i} in the form a+bia + b i.

5+4i23i=(5+4i)(2+3i)(23i)(2+3i)=10+15i+8i+12i24+6i6i9i2=2+23i13=213+2313i\begin{aligned} \dfrac{5 + 4i}{2 - 3i} &= \dfrac{(5 + 4i)(2 + 3i)}{(2 - 3i)(2 + 3i)} \\[3ex] &= \dfrac{10 + 15i + 8i + 12i^2}{4 + 6i - 6i - 9i^2} \\[3ex] &= \dfrac{-2 + 23i}{13} \\[3ex] &= -\dfrac{2}{13} + \dfrac{23}{13} i \end{aligned}

 

 

On this page