Level 1/Limits3. Case 1 - Real Limit-----Case 1 Find the δ\deltaδ & ϵ\epsilonϵ that satisfies limx→15x+2=7\lim_{x \to 1} 5x + 2 = 7x→1lim5x+2=7 Answer Step 1: Express ∣f(x)−L∣<ϵ|f(x) - L| < \epsilon∣f(x)−L∣<ϵ in terms of xxx ∣f(x)−L∣ = ∣(5x+2)−7∣ = ∣5(x−1)∣|f(x) - L| \; = \; |(5x + 2) - 7| \; = \; |5(x - 1)|∣f(x)−L∣=∣(5x+2)−7∣=∣5(x−1)∣ Step 2: Relate it to ϵ\epsilonϵ ∣f(x)−L∣<ϵ→∣5(x−1)∣<ϵ|f(x) - L| < \epsilon \quad \to \quad |5(x - 1)| < \epsilon∣f(x)−L∣<ϵ→∣5(x−1)∣<ϵ Step 3: Solve for ϵ\epsilonϵ ∣x−1∣<ϵ5|x - 1| < \frac{\epsilon}{5}∣x−1∣<5ϵ Step 4: Choose δ\deltaδ δ=ϵ5\delta = \frac{\epsilon}{5}δ=5ϵ Note: saying ∣x−1∣<ϵn|x - 1| < \dfrac{\epsilon}{n} \quad∣x−1∣<nϵ where n∈R, n≥3\quad n \in \mathbb{R}, \; n \geq 3 \quadn∈R,n≥3 so δ>ϵn\quad \delta > \dfrac{\epsilon}{n} \quadδ>nϵ is also true 2. Delta & Epsilon-----4. Case 2 - No Limit-----