Mathematics
Level 1/Limits

3. Case 1 - Real Limit

-----

Case 1

Find the δ\delta & ϵ\epsilon that satisfies

limx15x+2=7\lim_{x \to 1} 5x + 2 = 7

Answer

Step 1: Express f(x)L<ϵ|f(x) - L| < \epsilon in terms of xx

f(x)L  =  (5x+2)7  =  5(x1)|f(x) - L| \; = \; |(5x + 2) - 7| \; = \; |5(x - 1)|

Step 2: Relate it to ϵ\epsilon

f(x)L<ϵ5(x1)<ϵ|f(x) - L| < \epsilon \quad \to \quad |5(x - 1)| < \epsilon

Step 3: Solve for ϵ\epsilon

x1<ϵ5|x - 1| < \frac{\epsilon}{5}

Step 4: Choose δ\delta

δ=ϵ5\delta = \frac{\epsilon}{5}

Note: saying x1<ϵn|x - 1| < \dfrac{\epsilon}{n} \quad where nR,  n3\quad n \in \mathbb{R}, \; n \geq 3 \quad so δ>ϵn\quad \delta > \dfrac{\epsilon}{n} \quad is also true

 

 

On this page