Mathematics
Level 1/Limits

5. Case 3 - Limit to Infinity

-----

Case 3

Find the NN & ϵ\epsilon that satisfies

limx±1x=0\lim_{x \to \pm\infty}\dfrac{1}{x} = 0

Answer

For limits at infinity, we use the ϵN\epsilon-N definition

For any ϵ>0\epsilon > 0, there exists N>0N > 0 such that

x>N1x0<ϵ|x| > N \quad \to \quad |\dfrac{1}{x} - 0| < \epsilon

Step 1: Write the inequaltiy in terms of x

1x<ϵ|\dfrac{1}{x}| < \epsilon

Step 2: Solve for x|x|

x>1ϵ|x| > \dfrac{1}{\epsilon}

Step 3: Choose NN

N=1ϵN = \dfrac{1}{\epsilon}

 

 

On this page