Level 1/Limits5. Case 3 - Limit to Infinity-----Case 3 Find the NNN & ϵ\epsilonϵ that satisfies limx→±∞1x=0\lim_{x \to \pm\infty}\dfrac{1}{x} = 0x→±∞limx1=0 Answer For limits at infinity, we use the ϵ−N\epsilon-Nϵ−N definition For any ϵ>0\epsilon > 0ϵ>0, there exists N>0N > 0N>0 such that ∣x∣>N→∣1x−0∣<ϵ|x| > N \quad \to \quad |\dfrac{1}{x} - 0| < \epsilon∣x∣>N→∣x1−0∣<ϵ Step 1: Write the inequaltiy in terms of x ∣1x∣<ϵ|\dfrac{1}{x}| < \epsilon∣x1∣<ϵ Step 2: Solve for ∣x∣|x|∣x∣ ∣x∣>1ϵ|x| > \dfrac{1}{\epsilon}∣x∣>ϵ1 Step 3: Choose NNN N=1ϵN = \dfrac{1}{\epsilon}N=ϵ1 4. Case 2 - No Limit-----Group TheoryInvestigates algebraic structures called groups to understand how elements interact under a defined operation