Mathematics
Level 1/Limits

4. Case 2 - No Limit

-----

Case 2

Find the δ\delta & ϵ\epsilon that satisfies

limx0  f(x)={1+x,if x0,1+x,if x<0\lim_{x \to 0} \; f(x) = \begin{cases} 1 + x, & \text{if } x \ge 0,\\ -1 + x, & \text{if } x < 0 \end{cases}

Answer

As xx approaches 00 from above f(x)f(x) tends to +1+1

As xx approaches 00 from below f(x)f(x) tends to 1-1

If we pick a random value for ϵ\epsilon say ϵ=104\epsilon = 10^{-4} then

f(x)L<104|f(x) - L| < 10^{-4}

Case 1: x0x \ge 0

(1+x)L<104|(1 + x) - L| < 10^{-4}

Here LL would have to be the limit as x0x \to 0 . For x0x \ge 0, the function tends to 1, so

1+x1<1040x<104|1 + x - 1| < 10^{-4} \quad \to \quad 0 \le x < 10^{-4}

this approach works

Case 2: x<0x < 0

(1+x)L<104|(-1 + x) - L| < 10^{-4}

if we try to pick L=1L = 1 (the right hand limit), then

2+x104|-2 + x| \gg 10^{-4}

therefore no mater how small we pick δ\delta, we cannot satisy the condition for x<0x < 0

 

 

On this page